Bivariate Oblique Decision Tree Algorithms Based on Linear Discriminant Analysis

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Discriminant Analysis Algorithms

We propose new algorithms for computing linear discriminants to perform data dimensionality reduction from R to R, with p < n. We propose alternatives to the classical Fisher’s Distance criterion, namely, we investigate new criterions based on the: Chernoff-Distance, J-Divergence and Kullback-Leibler Divergence. The optimization problems that emerge of using these alternative criteria are non-c...

متن کامل

Oblique Linear Tree

In this paper we present system Ltree for proposicional supervised learning. Ltree is able to define decision surfaces both orthogonal and oblique to the axes defined by the attributes of the input space. This is done combining a decision tree with a linear discriminant by means of constructive induction. At each decision node Ltree defines a new instance space by insertion of new attributes th...

متن کامل

Algorithms for Regularized Linear Discriminant Analysis

This paper is focused on regularized versions of classification analysis and their computation for highdimensional data. A variety of regularized classification methods has been proposed and we critically discuss their computational aspects. We formulate several new algorithms for regularized linear discriminant analysis, which exploits a regularized covariance matrix estimator towards a regula...

متن کامل

HHCART: An Oblique Decision Tree

Decision trees are a popular technique in statistical data classification. They recursively partition the feature space into disjoint sub-regions until each sub-region becomes homogeneous with respect to a particular class. The basic Classification and Regression Tree (CART) algorithm partitions the feature space using axis parallel splits. When the true decision boundaries are not aligned with...

متن کامل

Process monitoring based on classification tree and discriminant analysis

To cope with the computational intensity associated with classification tree analysis and the multicolinearity in the process data, a newly developed process monitoring scheme integrating classification tree and Fisher Discriminant Analysis (FDA) is developed. FDA extracts the most significant components in the original process data and achieves optimal discriminating among different faults. Cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2020

ISSN: 1742-6588,1742-6596

DOI: 10.1088/1742-6596/1651/1/012084